PHYS 301 Midterm

Oct. 21, 2024

You have 75 minutes to complete this midterm. Attempt all questions. Write your
name and student number on this page. When necessary, make proper use of vector
notation. Including this coversheet, which is unnumbered, there are a total of 10 pages.
You may remove the last two sheets (also unnumbered) which are copies of the inside
front and back covers of the Griffiths textbook.

If you require more space to write your solutions, use the backs of the pages.
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Midterm (20 points)
Free Response: Write out complete answers to the following questions. Include diagrams where
appropriate. Show your work since it allows us to award partial credit.

1. Given that the electrostatic force is a conservative force, for which the line integral:
b
/ F.de = W(b) — W(a)
a

is path independent, show that V x E = 0.

4pts
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(3rts) 2. (a) Evaluate the following integral: (2 marks)
X —an e (27T a
Ae sin| — ) d (:1: — 7) dz.
0 a 4
(b) Evaluate the following integral:

/OO Ae %/ *gin 2777:/5 1) (:1: — 2) dzx.
a/2 a 4

Explain your reasoning. (1 mark)
Hint: Pay attention to the limits of integration.

3 pts
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3. (a) A long straight conducting pipe of radius a has a uniform charge per unit length A. If s
is the perpendicular distance from the pipe’s central axis, find the electric field for points (i)
inside (s < a) and (ii) outside (s > a) the pipe. Show your work. Solutions that only give the
correct final answer will not be awarded full credit. (4 marks)

o0
+ +
+ +
+ +
+ +
+ +
+ +
o0

(b) Show that the electric fields calculated in (a) satisfy the boundary conditions for E-*.
Assume that the pipe has thin walls and serves as the boundary separating the regions of space
inside and outside the pipe. (2 marks)

6 pts
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4. (a) Show that, by using separation of variables in Cartesian coordinates, Laplace’s equation in
two dimensions:

V2V (z,y) =0
can be re-expressed as:

d?X

- =KX 1
- , M)
d?Y

—— =k 2
= R, 2)

where V(z,y) = X(2)Y (y). (2 marks)

(b) Consider the two-dimensional square geometry below which contains three grounded wires
(V =0) of length d at (i) z = 0, (ii) x = d, and (iii) y = d. A fourth wire, at (iv) y = 0, is
held fixed at a potential given by Vjsin (27x/d).

'Y
T(v —0)
d
(V=0) (V =0)

2mx
Vo sin( ZH)

Given that the general solutions to Egs. (1) and (2) in part (a) lead to:
V(z,y) = (Ceky + De_ky> [Asin (kz) + B cos (kx)], (3)

use the four boundary conditions [(i)...(iv)] to find the unknown constants A, B, C, D, and k
in Eq. (3) and, thus, find the potential inside the square enclosed by the four wires. (5 marks)

7 pts




PHYS 121/Midterm

— Page 7 of 10 —

Name:

O0pts




PHYS 121/Midterm

— Page 8 of 10 —

Name:

O0pts




Griffiths front cover

VECTOR DERIVATIVES VECTOR IDENTITIES

Cartesian. dl=dxX+dyy+dzz; dt=dxdydz Triple Products

Gradient:  vi=Lgy 0 0, | (1) A-BxC)=B-(CxA)=C-(AxB)
ax dy 0z
2) AxBxC)=BA-C)—-CA-B)

av avy,  dv
Divergence: V-v = — % £

ax ' ay oz Product Rules
Curl: ~ Vxy= (3 - 31) it (3_ _ 8_> - (8_ _ 8vx> 2 3) V(o) =f(Ve) +&(V/)
ady 9z 9z ox ax dy
e 4 VA-B)=Ax(VxB)+Bx(VxA)+ (A -V)B+@®B-V)A

Laplacian: Vzt:—t+_+_
S 6 V-(fA=f(V-A)+A-(V))

Spherical. dl:drf‘—i—rd&é—krsin()dqbq;; dt =r?sinfdrdod¢ 6) V- AxB)=B-(VxA)—A-(VxB)

or . 10t 4 1 o
0

Cradient: Vit =3 b+ 50t oo 95 ® (1) Vx(fA) = f(V x A) —A x (V)
VxAxB)=B-V)A—(A-V)B+A(V-B)—B(V-A)
Divergence: V . v_.——(r ,;ﬁ(sinOUQ)-i- 1 vy ®) x (AxB) =( ) ( ) (
d rsinf d¢
Second Derivatives

Curl: v _ J 0 ng
e XY= oing |99 SN0 — 55 @ V-(VxA) =0

I1_L o8y, 38 g Lo 9] (10) Vx(Vf)=0

. [sin@ 0 or ('”"’)]0 Bl [Br (rve) = 54 ]¢

(11) Vx(VxA)=V(V-A)—-V?A

10 (,0 19 ot 1 o
Laplacian: V%t = — 72sing 56 \""0%6 ) T 2aa 902
placian " a,( ar>+r25m9 20 (“n 39)+r25in29 397

Cylindrical. dl=ds§+sd¢+dzs; dr=sdsdpdz

FUNDAMENTAL THEOREMS
Gradient: Vtzs—;§+%§—t¢3+g—ii
Divergences W5 = 13(5%) " 183% . %vz Gradient Theorem : fab(Vf) -dl= f(b) — f(a)
Divergence Theorem: [(V-A)dt=¢A-da
il VXV:[é%‘%]§+{%_%:lé+%[%(s%)_({;z;}i CurlThieorem: J(VxA) -da=¢A-dl

193 [ ot 18% 8%
P 2, 29 ( 9oF L
Laplacian: V?t = 75 (s 3s> + = —8¢2 4+ —



BASIC EQUATIONS OF ELECTRODYNAMICS

Griffiths back cover

FUNDAMENTAL CONSTANTS

Maxwell’s Equations

In general:
1
V-E=—p
€0
V xE = —g
ot
V-B=0
JE
V x B = wol + noeo—
ot
Auxiliary Fields
Definitions :
D= EQE +P
1
H=—B-M
Mo
Potentials
E=-VV — %,
ot

Lorentz force law

F=¢gE+vxB)

Energy, Momentum, and Power

In matter:

f

V'D:,Of

VxE:—g
dt

V-B=0
aD

VxH= —
Jr+ Y

Linear media:

P=¢x.E, D=cE

1

M=yx,H, H=-B

nm

B=V xA

1 1
Energy: U= —/ <€0E2+ —Bz> dt
2 Ho
Momentum: P=¢ [(ExB)dr

Poynting vector: S = L(E x B)
Mo

Larmor formula: P = ﬂqzaz
(37,44

€0 =8.85 x 10712 C?/Nm?
po =4m x 1077 N/A?

¢ =3.00x 10*m/s

e =1.60x107°C

m =9.11 x 1073 kg

(permittivity of free space)
(permeability of free space)
(speed of light)

(charge of the electron)

(mass of the electron)

SPHERICAL AND CYLINDRICAL COORDINATES

Spherical

x = rsin6 cos ¢
y =rsiné sing
z =rcosf

r=+/x*+y?+z?
6 = tan~! (,/x2 + yz/z)

¢ =tan™' (y/x)
Cylindrical

X = scos¢

y = ssing

z=z

s = /x2+y2
¢ = tan~' (y/x)
Z =2

f(:sinecosqbf'—i—cosecosd)é——sin ¢dA)
y =sin@sin ¢ T + cosOsin ¢ 6 +cosd ¢
7 =cosfr—sinf 6

F =sinfcosp X+ sin fsingy + cosb z
6 = cosfcospX+cosfsingy — sin 02
¢ =—singX+cosgy

X =cos¢§—sinpo
y=sin ¢S+ cosp ¢

i=1

§ =cos¢X+singy

¢ =—sinpX+cosgpy

i=1



